WJEC Unit 4 2024 June — Question 8

Exam BoardWJEC
ModuleUnit 4 (Unit 4)
Year2024
SessionJune
TopicNewton's laws and connected particles

  1. Three forces \(\mathbf { F } _ { 1 } , \mathbf { F } _ { 2 }\) and \(\mathbf { F } _ { 3 }\) are acting on an object of mass 3 kg such that
$$\begin{aligned} & \mathbf { F } _ { 1 } = ( \mathbf { i } + 8 c \mathbf { j } + 11 c \mathbf { k } ) \mathrm { N } ,
& \mathbf { F } _ { 2 } = ( - 14 \mathbf { i } - c \mathbf { j } - 12 \mathbf { k } ) \mathrm { N } ,
& \mathbf { F } _ { 3 } = ( ( 15 c + 1 ) \mathbf { i } + 2 c \mathbf { j } - 5 c \mathbf { k } ) \mathrm { N } , \end{aligned}$$ where \(c\) is a constant. The acceleration of the object is parallel to the vector \(( \mathbf { i } + \mathbf { j } )\).
  1. Find the value of the constant \(c\) and hence show that the acceleration of the object is \(( 6 \mathbf { i } + 6 \mathbf { j } ) \mathrm { ms } ^ { - 2 }\).
  2. When \(t = 0\) seconds, the object has position vector \(\mathbf { r } _ { 0 } \mathrm {~m}\) and is moving with velocity \(( - 17 \mathbf { i } + 8 \mathbf { j } ) \mathrm { ms } ^ { - 1 }\). When \(t = 4\) seconds, the object has position vector \(( - 13 \mathbf { i } + 84 \mathbf { j } ) \mathrm { m }\). Find the vector \(\mathbf { r } _ { 0 }\).