| Exam Board | WJEC |
| Module | Unit 3 (Unit 3) |
| Session | Specimen |
| Topic | Implicit equations and differentiation |
11. (a) The curve \(C\) is given by the equation
$$x ^ { 4 } + x ^ { 2 } y + y ^ { 2 } = 13$$
Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point ( \(- 1,3\) ).
(b) Show that the equation of the normal to the curve \(y ^ { 2 } = 4 x\) at the point \(P \left( p ^ { 2 } , 2 p \right)\) is
$$y + p x = 2 p + p ^ { 3 }$$
Given that \(p \neq 0\) and that the normal at \(P\) cuts the \(x\)-axis at \(B ( b , 0 )\), show that \(b > 2\).