OCR MEI Further Pure with Technology 2023 June — Question 2

Exam BoardOCR MEI
ModuleFurther Pure with Technology (Further Pure with Technology)
Year2023
SessionJune
TopicNumber Theory

2 Throughout this question ( \(a , b , c\) ) is a Pythagorean triple with the positive integers \(a , b , c\) ordered such that \(a \leqslant b \leqslant c\).
  1. Show that \(\mathrm { a } ^ { 2 } = \mathrm { b } + \mathrm { c }\) if and only if \(\mathrm { c } = \mathrm { b } + 1\).
  2. Create a program to find all the Pythagorean triples ( \(a , b , c\) ) such that \(\mathrm { a } ^ { 2 } = \mathrm { b } + \mathrm { c }\) and \(c \leqslant 1000\). Write out your program in full in the Printed Answer Booklet.
  3. Write down the number of Pythagorean triples found by your program in (b).
  4. Prove that there is no Pythagorean triple, \(( a , b , c )\), in which \(\mathrm { b } ^ { 2 } = \mathrm { a } + \mathrm { c }\).