OCR MEI Further Pure with Technology 2019 June — Question 2

Exam BoardOCR MEI
ModuleFurther Pure with Technology (Further Pure with Technology)
Year2019
SessionJune
TopicNumber Theory

2
  1. Prove that if \(x\) and \(y\) are integers which satisfy \(x ^ { 2 } - 2 y ^ { 2 } = 1\), then \(x\) is odd and \(y\) is even.
  2. Create a program to find, for a fixed positive integer \(s\), all the positive integer solutions \(( x , y )\) to the equation \(x ^ { 2 } - 2 y ^ { 2 } = 1\) where \(x \leqslant s\) and \(y \leqslant s\). Write out your program in the Printed Answer Booklet.
  3. Use your program to find all the positive integer solutions \(( x , y )\) to the equation \(x ^ { 2 } - 2 y ^ { 2 } = 1\) where \(x \leqslant 600\) and \(y \leqslant 600\). Give the solutions in ascending order of the value of \(x\).
  4. By writing the equation \(x ^ { 2 } - 2 y ^ { 2 } = 1\) in the form \(( x + \sqrt { 2 } y ) ( x - \sqrt { 2 } y ) = 1\) show how the first solution (the one with the lowest value of \(x\) ) in your answer to part (c) can be used to generate the other solutions you found in part (c).
  5. What can you deduce about the number of positive integer solutions \(( x , y )\) to the equation \(x ^ { 2 } - 2 y ^ { 2 } = 1\) ? In the remainder of this question \(T _ { m }\) is the \(m ^ { \text {th } }\) triangular number, the sum of the first \(m\) positive integers, so that \(T _ { m } = \frac { m ( m + 1 ) } { 2 }\).
  6. Create a program to find, for a fixed positive integer \(t\), all pairs of positive integers \(m\) and \(n\) which satisfy \(T _ { m } = n ^ { 2 }\) where \(m \leqslant t\) and \(n \leqslant t\). Write out your program in the Printed Answer Booklet.
  7. Use your program to find all pairs of positive integers \(m\) and \(n\) which satisfy \(T _ { m } = n ^ { 2 }\) where \(m \leqslant 300\) and \(n \leqslant 300\). Give the pairs in ascending order of the value of \(m\).
  8. By comparing your answers to part (c) and part (g), or otherwise, prove that there are infinitely many triangular numbers which are perfect squares.
This paper (3 questions)
View full paper