OCR MEI Further Statistics Minor 2024 June — Question 3

Exam BoardOCR MEI
ModuleFurther Statistics Minor (Further Statistics Minor)
Year2024
SessionJune
TopicHypothesis test of Pearson’s product-moment correlation coefficient

3 The scatter diagram below illustrates data concerning average annual income per person, \(
) x\(, and average life expectancy, \)y$ years, for 45 randomly selected cities.
\includegraphics[max width=\textwidth, alt={}, center]{464c80be-007b-4d5a-9fe5-2f35100bdea6-3_860_1465_354_244}
  1. State whether neither variable, one variable or both variables can be considered to be random in this situation. A student is researching possible positive association between average annual income and average life expectancy. The student decides that the data point labelled A on the scatter diagram is an outlier.
  2. Describe the apparent relationship between average annual income and average life expectancy for this data point relative to the rest of the data. The data for point A is removed. The student now wishes to carry out a hypothesis test using the product moment correlation coefficient for the remaining 44 data points to investigate whether there is positive correlation between average annual income and average life expectancy.
  3. Explain why this type of hypothesis test is appropriate in this situation. Justify your answer. The summary statistics for these 44 data points are as follows.
    \(\sum x = 751120 \sum y = 2397.1 \sum x ^ { 2 } = 14363849200 \sum y ^ { 2 } = 133014.63 \sum x y = 42465962\)
  4. Determine the value of the product moment correlation coefficient.
  5. Carry out the test at the 1\% significance level.