OCR MEI Further Mechanics Minor 2023 June — Question 5

Exam BoardOCR MEI
ModuleFurther Mechanics Minor (Further Mechanics Minor)
Year2023
SessionJune
TopicMoments

5 Fig. 5.1 shows a particle P, of mass 5 kg , and a particle Q, of mass 11 kg , which are attached to the ends of a light, inextensible string. The string is taut and passes over a small smooth pulley fixed to the ceiling. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Fig. 5.1} \includegraphics[alt={},max width=\textwidth]{cad8805d-59f6-4ed2-81f4-9e8c749461f5-5_367_707_495_251}
\end{figure} When a force of magnitude \(H \mathrm {~N}\), acting at an angle \(\theta\) to the upward vertical, is applied to Q the particles hang in equilibrium, with the part of the string connecting the pulley to Q making an angle of \(40 ^ { \circ }\) with the upward vertical. It is given that the force acts in the same vertical plane in which the string lies.
  1. Determine the values of \(H\) and \(\theta\). Particle Q is now removed. The string is instead attached to one end of a uniform beam B of length 3 m and mass 7 kg . The other end of B is in contact with a rough horizontal floor. The situation is shown in Fig. 5.2. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 5.2} \includegraphics[alt={},max width=\textwidth]{cad8805d-59f6-4ed2-81f4-9e8c749461f5-5_504_978_1557_251}
    \end{figure} With B in equilibrium, at an angle \(\phi\) to the horizontal, the part of the string connecting the pulley to B makes an angle of \(30 ^ { \circ }\) with the upward vertical. It is given that the string and B lie in the same vertical plane.
  2. Determine the smallest possible value for the coefficient of friction between B and the floor.
  3. Determine the value of \(\phi\).