5 Point A lies 20 m vertically below a point B . A particle P of mass 4 m kg is projected upwards from A , at a speed of \(17.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). At the same time, a particle Q of mass \(m \mathrm {~kg}\) is released from rest at point B . The particles collide directly, and it is given that the coefficient of restitution in the collision between P and Q is 0.6 .
- Show that, immediately after the collision, P continues to travel upwards at \(0.7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and determine, at this time, the corresponding velocity of Q .
In another situation, a particle of mass \(3 m \mathrm {~kg}\) is released from rest and falls vertically. After it has fallen 10 m , it explodes into two fragments. Immediately after the explosion, the lower fragment, of mass \(2 m \mathrm {~kg}\), moves vertically downwards with speed \(v _ { 1 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\), and the upper fragment, of mass \(m \mathrm {~kg}\), moves vertically upwards with speed \(v _ { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Given that, in the explosion, the kinetic energy of the system increases by \(72 \%\), show that \(2 v _ { 1 } ^ { 2 } + v _ { 2 } ^ { 2 } = 1011.36\).
- By finding another equation connecting \(v _ { 1 }\) and \(v _ { 2 }\), determine the speeds of the fragments immediately after the explosion.