10 The equations of two straight lines are
$$\mathbf { r } = \mathbf { i } + \mathbf { j } + 2 a \mathbf { k } + \lambda ( 3 \mathbf { i } + 4 \mathbf { j } + a \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 3 \mathbf { i } - \mathbf { j } + 4 \mathbf { k } + \mu ( - \mathbf { i } + 2 \mathbf { j } + 2 \mathbf { k } ) ,$$
where \(a\) is a constant.
- Given that the acute angle between the directions of these lines is \(\frac { 1 } { 4 } \pi\), find the possible values of \(a\).
\includegraphics[max width=\textwidth, alt={}, center]{b1c4d339-322f-496d-833e-8b2d002d7c48-14_2715_35_144_2012} - Given instead that the lines intersect, find the value of \(a\) and the position vector of the point of intersection.