2 A supermarket sells oranges. Their weights are modelled by the random variable \(X\) which has a Normal distribution with mean 345 grams and standard deviation 15 grams. When the oranges have been peeled, their weights in grams, \(Y\), are modelled by \(Y = 0.7 X\).
- Find the probability that a randomly chosen peeled orange weighs less than 250 grams.
I randomly choose 5 oranges to buy.
- Find the probability that the total weight of the 5 unpeeled oranges is at least 1800 grams.
- I peel three of the oranges and leave the remaining two unpeeled. Find the probability that the total weight of the two unpeeled oranges is greater than the total weight of the three peeled ones.