OCR MEI Further Statistics A AS 2019 June — Question 6

Exam BoardOCR MEI
ModuleFurther Statistics A AS (Further Statistics A AS)
Year2019
SessionJune
TopicLinear regression
TypeInterpret regression line parameters

6 A meteorologist is investigating the relationship between altitude \(x\) metres and mean annual temperature \(y ^ { \circ } \mathrm { C }\) in an American state.
She selects 12 locations at various altitudes and then stations a remote monitoring device at each of them to measure the temperature over the course of a year. Fig. 6 illustrates the data which she obtains. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{fd496303-10f1-450e-bbeb-421ab6f4de21-6_686_1477_486_292} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Explain why it would not be appropriate to carry out a hypothesis test for correlation based on the product moment correlation coefficient.
  2. Explain why altitude has been plotted on the horizontal axis in Fig. 6. Summary statistics for \(x\) and \(y\) are as follows. $$\sum x = 21200 \quad \sum y = 105.4 \quad \sum x ^ { 2 } = 39100000 \quad \sum y ^ { 2 } = 1004 \quad \sum x y = 176090$$
  3. Calculate the equation of the regression line of \(y\) on \(x\).
  4. Use the equation of the regression line to predict the values of the mean annual temperature at each of the following altitudes.
    • 2000 metres
    • 3000 metres
    • Comment on the reliability of your predictions in part (d).
    • Calculate the value of the residual for the data point ( \(1600,8.1\) ).