OCR MEI Further Mechanics B AS Specimen — Question 4

Exam BoardOCR MEI
ModuleFurther Mechanics B AS (Further Mechanics B AS)
SessionSpecimen
TopicMomentum and Collisions 2

4 Two uniform circular discs with the same radius, A of mass 1 kg and B of mass 5.25 kg , slide on a smooth horizontal surface and collide obliquely with smooth contact. Fig. 4 gives information about the velocities of the discs just before and just after the collision.
  • The line XY passes through the centres of the discs at the moment of collision
  • The components parallel and perpendicular to XY of the velocities of A are shown
  • Before the collision, B is at rest and after it is moving at \(2 \mathrm {~ms} ^ { - 1 }\) in the direction XY
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a01b2e46-e213-4f20-bc2e-5852061d8b91-4_582_1716_721_155} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} The coefficient of restitution between the two discs is \(\frac { 2 } { 3 }\).
  1. Find the values of \(U\) and \(u\).
  2. What information in the question tells you that \(v = V\) ? The speed of disc A before the collision is \(8.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  3. Find the speed of disc A after the collision. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a01b2e46-e213-4f20-bc2e-5852061d8b91-5_398_396_397_475} \captionsetup{labelformat=empty} \caption{Fig. 5.1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a01b2e46-e213-4f20-bc2e-5852061d8b91-5_399_332_399_945} \captionsetup{labelformat=empty} \caption{Fig. 5.2}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{a01b2e46-e213-4f20-bc2e-5852061d8b91-5_305_326_493_1354} \captionsetup{labelformat=empty} \caption{Fig. 5.3}
    \end{figure} Fig. 5.1 shows a vertical light elastic spring. It is fixed to a horizontal table at one end. Fig 5.2 shows the spring with a particle of mass \(m \mathrm {~kg}\) attached to it at the other end. The system is in equilibrium when the spring is compressed by a distance \(h \mathrm {~m}\).