2 A light elastic string has natural length \(a\) and modulus of elasticity \(k m g\), where \(k > 2\). One end of the string is attached to a fixed point O . A particle P of mass \(m\) is attached to the other end of the string. P is held at rest a distance \(\frac { 3 } { 2 } a\) vertically below O .
At time \(t\) after P is released, its vertical distance below O is \(y\).
- Show that, while the string is in tension, the equation of motion of P is given by the differential equation \(\frac { d ^ { 2 } y } { d t ^ { 2 } } = ( k + 1 ) g - \frac { k g } { a } y\).
A student transforms the differential equation in part (a) into the standard SHM equation \(\frac { d ^ { 2 } x } { d t ^ { 2 } } = - \omega ^ { 2 } x\).
- - Find an expression for \(x\) in terms of \(y , k\) and \(a\).
- Find an expression for \(\omega\) in terms of \(k , a\) and \(g\).