OCR MEI Further Mechanics A AS 2019 June — Question 4

Exam BoardOCR MEI
ModuleFurther Mechanics A AS (Further Mechanics A AS)
Year2019
SessionJune
TopicCentre of Mass 1

4 A shovel consists of a blade and handle, as shown in Fig. 4.1 and Fig. 4.2. The dimensions shown in the figures are in metres.
The blade is modelled as a uniform rectangular lamina ABCD lying in the Oxy plane, where O is the mid-point of AB . The handle is modelled as a thin uniform rod EF . The handle lies in the Oyz plane, and makes an angle \(\alpha\) with \(\mathrm { O } y\), where \(\sin \alpha = \frac { 7 } { 25 }\). The rod and lamina are rigidly attached at E, the mid-point of CD.
The blade of the shovel has mass 1.25 kg and the handle of the shovel has mass 0.5 kg . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6b27d322-417e-4cea-85cc-65d3728173c8-3_746_671_1217_246} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6b27d322-417e-4cea-85cc-65d3728173c8-3_664_766_1226_1064} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
\end{figure}
  1. Find,
    1. the \(y\)-coordinate of the centre of mass of the shovel,
    2. the \(z\)-coordinate of the centre of mass of the shovel. The shovel is freely suspended from O and hangs in equilibrium.
  2. Calculate the angle that OE makes with the vertical.