AQA FP2 2013 January — Question 3

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJanuary
TopicSequences and series, recurrence and convergence

3
  1. Show that \(\frac { 1 } { 5 r - 2 } - \frac { 1 } { 5 r + 3 } = \frac { A } { ( 5 r - 2 ) ( 5 r + 3 ) }\), stating the value of the constant \(A\).
    (2 marks)
  2. Hence use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 5 r - 2 ) ( 5 r + 3 ) } = \frac { n } { 3 ( 5 n + 3 ) }$$
  3. Find the value of $$\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 5 r - 2 ) ( 5 r + 3 ) }$$ (1 mark)