AQA FP1 2016 June — Question 4 2 marks

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionJune
Marks2
TopicTrig Graphs & Exact Values

4
  1. Given that \(\sin \frac { \pi } { 3 } = \cos \frac { \pi } { k }\), state the value of the integer \(k\).
  2. Hence, or otherwise, find the general solution of the equation $$\cos \left( 2 x - \frac { 5 \pi } { 6 } \right) = \sin \frac { \pi } { 3 }$$ giving your answer, in its simplest form, in terms of \(\pi\).
  3. Hence, given that \(\cos \left( 2 x - \frac { 5 \pi } { 6 } \right) = \sin \frac { \pi } { 3 }\), show that there is only one finite value for \(\tan x\) and state its exact value.
    [0pt] [2 marks]