AQA FP1 2012 June — Question 3

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionJune
TopicComplex Numbers Arithmetic
TypeLinear equations in z and z*

3 It is given that \(z = x + \mathrm { i } y\), where \(x\) and \(y\) are real numbers.
  1. Find, in terms of \(x\) and \(y\), the real and imaginary parts of $$\mathrm { i } ( z + 7 ) + 3 \left( z ^ { * } - \mathrm { i } \right)$$
  2. Hence find the complex number \(z\) such that $$\mathrm { i } ( z + 7 ) + 3 \left( z ^ { * } - \mathrm { i } \right) = 0$$