2 It is given that \(z = x + \mathrm { i } y\), where \(x\) and \(y\) are real numbers.
- Find, in terms of \(x\) and \(y\), the real and imaginary parts of
$$3 \mathrm { i } z + 2 z ^ { * }$$
where \(z ^ { * }\) is the complex conjugate of \(z\).
- Find the complex number \(z\) such that
$$3 \mathrm { i } z + 2 z ^ { * } = 7 + 8 \mathrm { i }$$