The matrix \(\mathbf { X }\) is defined by \(\left[ \begin{array} { l l } 1 & 2 3 & 0 \end{array} \right]\).
Given that \(\mathbf { X } ^ { 2 } = \left[ \begin{array} { c c } m & 2 3 & 6 \end{array} \right]\), find the value of \(m\).
Show that \(\mathbf { X } ^ { 3 } - 7 \mathbf { X } = n \mathbf { I }\), where \(n\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
It is given that \(\mathbf { A } = \left[ \begin{array} { r r } 1 & 0 0 & - 1 \end{array} \right]\).
Describe the geometrical transformation represented by \(\mathbf { A }\).
The matrix \(\mathbf { B }\) represents an anticlockwise rotation through \(45 ^ { \circ }\) about the origin. Show that \(\mathbf { B } = k \left[ \begin{array} { r r } 1 & - 1 1 & 1 \end{array} \right]\), where \(k\) is a surd.
Find the image of the point \(P ( - 1,2 )\) under an anticlockwise rotation through \(45 ^ { \circ }\) about the origin, followed by the transformation represented by \(\mathbf { A }\).
\(7 \quad\) The variables \(y\) and \(x\) are related by an equation of the form
$$y = a x ^ { n }$$
where \(a\) and \(n\) are constants.
Let \(Y = \log _ { 10 } y\) and \(X = \log _ { 10 } x\).