AQA FP1 2013 January — Question 6

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2013
SessionJanuary
TopicLinear transformations

6
  1. The matrix \(\mathbf { X }\) is defined by \(\left[ \begin{array} { l l } 1 & 2
    3 & 0 \end{array} \right]\).
    1. Given that \(\mathbf { X } ^ { 2 } = \left[ \begin{array} { c c } m & 2
      3 & 6 \end{array} \right]\), find the value of \(m\).
    2. Show that \(\mathbf { X } ^ { 3 } - 7 \mathbf { X } = n \mathbf { I }\), where \(n\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
  2. It is given that \(\mathbf { A } = \left[ \begin{array} { r r } 1 & 0
    0 & - 1 \end{array} \right]\).
    1. Describe the geometrical transformation represented by \(\mathbf { A }\).
    2. The matrix \(\mathbf { B }\) represents an anticlockwise rotation through \(45 ^ { \circ }\) about the origin. Show that \(\mathbf { B } = k \left[ \begin{array} { r r } 1 & - 1
      1 & 1 \end{array} \right]\), where \(k\) is a surd.
    3. Find the image of the point \(P ( - 1,2 )\) under an anticlockwise rotation through \(45 ^ { \circ }\) about the origin, followed by the transformation represented by \(\mathbf { A }\).
      \(7 \quad\) The variables \(y\) and \(x\) are related by an equation of the form $$y = a x ^ { n }$$ where \(a\) and \(n\) are constants. Let \(Y = \log _ { 10 } y\) and \(X = \log _ { 10 } x\).