AQA FP1 2012 January — Question 4

Exam BoardAQA
ModuleFP1 (Further Pure Mathematics 1)
Year2012
SessionJanuary
TopicSequences and series, recurrence and convergence

4
  1. Use the formulae for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( 4 r - 3 ) = k n ( n + 1 ) \left( 2 n ^ { 2 } - 1 \right)$$ where \(k\) is a constant.
  2. Hence evaluate $$\sum _ { r = 20 } ^ { 40 } r ^ { 2 } ( 4 r - 3 )$$ (2 marks)