Edexcel M5 — Question 3

Exam BoardEdexcel
ModuleM5 (Mechanics 5)
TopicSecond order differential equations

3. At time \(t\) seconds, the position vector \(\mathbf { r }\) metres of a particle \(P\), relative to a fixed origin \(O\), satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } + 3 \mathbf { r } = \mathbf { 0 }$$ At time \(t = 0 , P\) is at the point with position vector \(2 \mathbf { i } \mathrm {~m}\) and is moving with velocity \(2 \mathbf { j } \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Find the position vector of \(P\) when \(t = \ln 2\).
(10 marks)