| Exam Board | Edexcel |
| Module | M5 (Mechanics 5) |
| Year | 2018 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
3. A particle \(P\) moves in the \(x y\)-plane in such a way that its position vector \(\mathbf { r }\) metres at time \(t\) seconds, where \(0 \leqslant t < \pi\), satisfies the differential equation
$$\sec ^ { 2 } \left( \frac { 1 } { 2 } t \right) \frac { \mathrm { d } \mathbf { r } } { \mathrm {~d} t } + \sec ^ { 3 } \left( \frac { 1 } { 2 } t \right) \sin \left( \frac { 1 } { 2 } t \right) \mathbf { r } = \sin \left( \frac { 1 } { 2 } t \right) \mathbf { i } + \sec ^ { 2 } \left( \frac { 1 } { 2 } t \right) \mathbf { j }$$
When \(t = 0\), the particle is at the point with position vector \(( - \mathbf { i } + \mathbf { j } ) \mathrm { m }\).
Find \(\mathbf { r }\) in terms of \(t\).