| Exam Board | Edexcel |
| Module | M5 (Mechanics 5) |
| Year | 2015 |
| Session | June |
| Topic | First order differential equations (integrating factor) |
2. A particle \(P\) moves so that its position vector, \(\mathbf { r }\) metres, at time \(t\) seconds, where \(0 \leqslant t < \frac { \pi } { 2 }\), satisfies the differential equation
$$\frac { \mathrm { d } \mathbf { r } } { \mathrm {~d} t } - ( \tan t ) \mathbf { r } = ( \sin t ) \mathbf { i }$$
When \(t = 0 , \mathbf { r } = - \frac { 1 } { 2 } \mathbf { i }\).
Find \(\mathbf { r }\) in terms of \(t\).