Edexcel M5 2014 June — Question 8

Exam BoardEdexcel
ModuleM5 (Mechanics 5)
Year2014
SessionJune
TopicSimple Harmonic Motion

8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{57b98cdd-4121-4495-b500-185cbf3ff1a8-13_739_739_276_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A uniform circular disc of radius \(2 a\) has centre \(O\). The points \(P , Q , R\) and \(S\) on the disc are the vertices of a square with centre \(O\) and \(O P = a\). Four circular holes, each of radius \(\frac { a } { 2 }\), and with centres \(P , Q , R\) and \(S\), are drilled in the disc to produce the lamina \(L\), shown shaded in Figure 1. The mass of \(L\) is \(M\).
  1. Show that the moment of inertia of \(L\) about an axis through \(O\), and perpendicular to the plane of \(L\), is \(\frac { 55 M a ^ { 2 } } { 24 }\) The lamina \(L\) is free to rotate in a vertical plane about a fixed smooth horizontal axis which is perpendicular to \(L\) and which passes through a point \(A\) on the circumference of \(L\). At time \(t , A O\) makes an angle \(\theta\) with the downward vertical through \(A\).
  2. Show that \(\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } = - \frac { 48 g } { 151 a } \sin \theta\)
  3. Hence find the period of small oscillations of \(L\) about its position of stable equilibrium. The magnitude of the component, in a direction perpendicular to \(A O\), of the force exerted on \(L\) by the axis is \(X\).
  4. Find \(X\) in terms of \(M , g\) and \(\theta\). \includegraphics[max width=\textwidth, alt={}, center]{57b98cdd-4121-4495-b500-185cbf3ff1a8-14_159_1662_2416_173}