8.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{57b98cdd-4121-4495-b500-185cbf3ff1a8-13_739_739_276_607}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
A uniform circular disc of radius \(2 a\) has centre \(O\). The points \(P , Q , R\) and \(S\) on the disc are the vertices of a square with centre \(O\) and \(O P = a\). Four circular holes, each of radius \(\frac { a } { 2 }\), and with centres \(P , Q , R\) and \(S\), are drilled in the disc to produce the lamina \(L\), shown shaded in Figure 1. The mass of \(L\) is \(M\).
- Show that the moment of inertia of \(L\) about an axis through \(O\), and perpendicular to the plane of \(L\), is \(\frac { 55 M a ^ { 2 } } { 24 }\)
The lamina \(L\) is free to rotate in a vertical plane about a fixed smooth horizontal axis which is perpendicular to \(L\) and which passes through a point \(A\) on the circumference of \(L\). At time \(t , A O\) makes an angle \(\theta\) with the downward vertical through \(A\).
- Show that \(\frac { \mathrm { d } ^ { 2 } \theta } { \mathrm {~d} t ^ { 2 } } = - \frac { 48 g } { 151 a } \sin \theta\)
- Hence find the period of small oscillations of \(L\) about its position of stable equilibrium.
The magnitude of the component, in a direction perpendicular to \(A O\), of the force exerted on \(L\) by the axis is \(X\).
- Find \(X\) in terms of \(M , g\) and \(\theta\).
\includegraphics[max width=\textwidth, alt={}, center]{57b98cdd-4121-4495-b500-185cbf3ff1a8-14_159_1662_2416_173}