| Exam Board | Edexcel |
| Module | M5 (Mechanics 5) |
| Year | 2003 |
| Session | June |
| Topic | Simple Harmonic Motion |
6. (a) Prove, using integration, that the moment of inertia of a uniform circular disc, of mass \(m\) and radius \(a\), about an axis through its centre \(O\) perpendicular to the plane of the disc is \(\frac { 1 } { 2 } m a ^ { 2 }\).
The line \(A B\) is a diameter of the disc and \(P\) is the mid-point of \(O A\). The disc is free to rotate about a fixed smooth horizontal axis \(L\). The axis lies in the plane of the disc, passes through \(P\) and is perpendicular to \(O A\). A particle of mass \(m\) is attached to the disc at \(A\) and a particle of mass \(2 m\) is attached to the disc at \(B\).
(b) Show that the moment of inertia of the loaded disc about \(L\) is \(\frac { 21 } { 4 } m a ^ { 2 }\).
At time \(t = 0 , P B\) makes a small angle with the downward vertical through \(P\) and the loaded disc is released from rest. By obtaining an equation of motion for the disc and using a suitable approximation,
(c) find the time when the loaded disc first comes to instantaneous rest.
END