4 The curve \(y = \mathrm { e } ^ { - 4 x } \tan x\) has two stationary points in the interval \(0 \leqslant x < \frac { 1 } { 2 } \pi\).
- Obtain an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show it can be written in the form \(\sec ^ { 2 } x ( a + b \sin 2 x ) \mathrm { e } ^ { - 4 x }\), where \(a\) and \(b\) are constants.
- Hence find the exact \(x\)-coordinates of the two stationary points.