3 Two planes, \(A\) and \(B\), flying at the same altitude, are participating in an air show. Initially the planes are 400 m apart and plane \(B\) is on a bearing of \(130 ^ { \circ }\) from plane \(A\). Plane \(A\) is moving due south with a constant speed of \(75 \mathrm {~ms} ^ { - 1 }\). Plane \(B\) is moving at a constant speed of \(40 \mathrm {~ms} ^ { - 1 }\) and has set a course to get as close as possible to \(A\).
- Find the bearing of the course set by \(B\) and the shortest distance between the two planes in the subsequent motion.
- Find the total distance travelled by \(A\) and \(B\) from the instant when they are initially 400 m apart to the point of their closest approach.