7
\includegraphics[max width=\textwidth, alt={}, center]{ea62d6d9-ac2f-44e7-8bfb-ae9aeea7109b-4_524_732_258_705}
The diagram shows a uniform rectangular lamina \(A B C D\) with \(A B = 6 a , A D = 8 a\) and centre \(G\). The mass of the lamina is \(m\). The lamina rotates freely in a vertical plane about a fixed horizontal axis passing through \(A\) and perpendicular to the lamina.
- Find the moment of inertia of the lamina about this axis.
The lamina is released from rest with \(A D\) horizontal and \(B C\) below \(A D\).
- For an instant during the subsequent motion when \(A D\) is vertical, show that the angular speed of the lamina is \(\sqrt { \frac { 3 g } { 50 a } }\) and find its angular acceleration.
At an instant when \(A D\) is vertical, the force acting on the lamina at \(A\) has magnitude \(F\).
- By finding components parallel and perpendicular to \(G A\), or otherwise, show that \(F = \frac { \sqrt { 493 } } { 20 } \mathrm { mg }\).
[0pt]
[8]