6 A rigid body consists of a uniform rod \(A B\), of mass 15 kg and length 2.8 m , with a particle of mass 5 kg attached at \(B\). The body rotates without resistance in a vertical plane about a fixed horizontal axis through \(A\).
- Find the distance of the centre of mass of the body from \(A\).
- Find the moment of inertia of the body about the axis.
\includegraphics[max width=\textwidth, alt={}, center]{4cac1898-8251-4cda-bbbc-c2c30fde5a6e-3_475_682_680_719}
At one instant, \(A B\) makes an acute angle \(\theta\) with the downward vertical, the angular speed of the body is \(1.2 \mathrm { rad } \mathrm { s } ^ { - 1 }\) and the angular acceleration of the body is \(3.5 \mathrm { rad } \mathrm { s } ^ { - 2 }\) (see diagram). - Show that \(\sin \theta = 0.8\).
- Find the components, parallel and perpendicular to \(B A\), of the force acting on the body at \(A\).
[0pt]
[Question 7 is printed overleaf.]
\includegraphics[max width=\textwidth, alt={}, center]{4cac1898-8251-4cda-bbbc-c2c30fde5a6e-4_949_1112_281_550}
A small bead \(B\), of mass \(m\), slides on a smooth circular hoop of radius \(a\) and centre \(O\) which is fixed in a vertical plane. A light elastic string has natural length \(2 a\) and modulus of elasticity \(m g\); one end is attached to \(B\), and the other end is attached to a light ring \(R\) which slides along a smooth horizontal wire. The wire is in the same vertical plane as the hoop, and at a distance \(2 a\) above \(O\). The elastic string \(B R\) is always vertical, and \(O B\) makes an angle \(\theta\) with the downward vertical (see diagram). - Show that \(\theta = 0\) is a position of stable equilibrium.
- Find the approximate period of small oscillations about the equilibrium position \(\theta = 0\).