Edexcel M4 2018 June — Question 1

Exam BoardEdexcel
ModuleM4 (Mechanics 4)
Year2018
SessionJune
TopicMoments

1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e0f141c7-ecd0-4f62-bfad-76c81c2d6396-02_538_881_278_534} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A uniform rod \(A B\) has mass \(m\) and length 4a. The end \(A\) of the rod is freely hinged to a fixed point. One end of a light elastic string, of natural length \(a\) and modulus \(\frac { 1 } { 4 } m g\), is attached to the end \(B\) of the rod. The other end of the string is attached to a small light smooth ring \(R\). The ring can move freely on a smooth horizontal wire which is fixed at a height \(a\) above \(A\), and in a vertical plane through \(A\). The angle between the rod and the horizontal is \(\theta\), where \(0 < \theta < \frac { \pi } { 2 }\), as shown in Figure 1. Given that the elastic string is vertical,
  1. show that the potential energy of the system is $$2 m g a \left( \sin ^ { 2 } \theta - \sin \theta \right) + \text { constant }$$
  2. Show that when \(\theta = \frac { \pi } { 6 }\) the rod is in stable equilibrium.