Edexcel M4 2012 June — Question 3

Exam BoardEdexcel
ModuleM4 (Mechanics 4)
Year2012
SessionJune
TopicVariable Force

  1. Two particles, of masses \(m\) and \(2 m\), are connected to the ends of a long light inextensible string. The string passes over a small smooth fixed pulley and hangs vertically on either side. The particles are released from rest with the string taut. Each particle is subject to air resistance of magnitude \(k v ^ { 2 }\), where \(v\) is the speed of each particle after it has moved a distance \(x\) from rest and \(k\) is a positive constant.
    1. Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( v ^ { 2 } \right) + \frac { 4 k } { 3 m } v ^ { 2 } = \frac { 2 g } { 3 }\)
    2. Find \(v ^ { 2 }\) in terms of \(x\).
    3. Deduce that the tension in the string, \(T\), satisfies
    $$\frac { 4 m g } { 3 } \leqslant T < \frac { 3 m g } { 2 }$$