Edexcel M4 2011 June — Question 7

Exam BoardEdexcel
ModuleM4 (Mechanics 4)
Year2011
SessionJune
TopicMoments

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2b891a9c-3abe-4e88-ba94-b6abcb37b4c3-13_451_1077_315_370} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a framework \(A B C\), consisting of two uniform rods rigidly joined together at \(B\) so that \(\angle A B C = 90 ^ { \circ }\). The rod \(A B\) has length \(2 a\) and mass \(4 m\), and the rod \(B C\) has length \(a\) and mass \(2 m\). The framework is smoothly hinged at \(A\) to a fixed point, so that the framework can rotate in a fixed vertical plane. One end of a light elastic string, of natural length \(2 a\) and modulus of elasticity \(3 m g\), is attached to \(A\). The string passes through a small smooth ring \(R\) fixed at a distance \(2 a\) from \(A\), on the same horizontal level as \(A\) and in the same vertical plane as the framework. The other end of the string is attached to \(B\). The angle \(A R B\) is \(\theta\), where \(0 < \theta < \frac { \pi } { 2 }\).
  1. Show that the potential energy \(V\) of the system is given by $$V = 8 a m g \sin 2 \theta + 5 a m g \cos 2 \theta + \text { constant }$$
  2. Find the value of \(\theta\) for which the system is in equilibrium.
  3. Determine the stability of this position of equilibrium.