Edexcel M4 2010 June — Question 5

Exam BoardEdexcel
ModuleM4 (Mechanics 4)
Year2010
SessionJune
TopicWork, energy and Power 2

5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{60202547-5d12-405f-bc83-2907419ec354-09_413_1212_262_365} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The end \(A\) of a uniform rod \(A B\), of length \(2 a\) and mass \(4 m\), is smoothly hinged to a fixed point. The end \(B\) is attached to one end of a light inextensible string which passes over a small smooth pulley, fixed at the same level as \(A\). The distance from \(A\) to the pulley is \(4 a\). The other end of the string carries a particle of mass \(m\) which hangs freely, vertically below the pulley, with the string taut. The angle between the rod and the downward vertical is \(\theta\), where \(0 < \theta < \frac { \pi } { 2 }\), as shown in Figure 1.
  1. Show that the potential energy of the system is $$2 m g a ( \sqrt { } ( 5 - 4 \sin \theta ) - 2 \cos \theta ) + \text { constant }$$
  2. Hence, or otherwise, show that any value of \(\theta\) which corresponds to a position of equilibrium of the system satisfies the equation $$4 \sin ^ { 3 } \theta - 6 \sin ^ { 2 } \theta + 1 = 0 .$$
  3. Given that \(\theta = \frac { \pi } { 6 }\) corresponds to a position of equilibrium, determine its stability. \section*{L
    \(\_\_\_\_\)}