OCR MEI M3 2014 June — Question 1

Exam BoardOCR MEI
ModuleM3 (Mechanics 3)
Year2014
SessionJune
TopicDimensional Analysis

1
  1. The speed \(v\) of sound in a solid material is given by \(v = \sqrt { \frac { E } { \rho } }\), where \(E\) is Young's modulus for the material and \(\rho\) is its density.
    1. Find the dimensions of Young's modulus. The density of steel is \(7800 \mathrm {~kg} \mathrm {~m} ^ { - 3 }\) and the speed of sound in steel is \(6100 \mathrm {~ms} ^ { - 1 }\).
    2. Find Young's modulus for steel, stating the units in which your answer is measured. A tuning fork has cylindrical prongs of radius \(r\) and length \(l\). The frequency \(f\) at which the tuning fork vibrates is given by \(f = k c ^ { \alpha } E ^ { \beta } \rho ^ { \gamma }\), where \(c = \frac { l ^ { 2 } } { r }\) and \(k\) is a dimensionless constant.
    3. Find \(\alpha , \beta\) and \(\gamma\).
  2. A particle P is performing simple harmonic motion along a straight line, and the centre of the oscillations is O . The points X and Y on the line are on the same side of O , at distances 3.9 m and 6.0 m from O respectively. The speed of P is \(1.04 \mathrm {~ms} ^ { - 1 }\) when it passes through X and \(0.5 \mathrm {~ms} ^ { - 1 }\) when it passes through Y.
    1. Find the amplitude and the period of the oscillations.
    2. Find the time taken for P to travel directly from X to Y .