OCR MEI M3 2006 January — Question 4

Exam BoardOCR MEI
ModuleM3 (Mechanics 3)
Year2006
SessionJanuary
TopicCentre of Mass 2

4 The region between the curve \(y = 4 - x ^ { 2 }\) and the \(x\)-axis, from \(x = 0\) to \(x = 2\), is occupied by a uniform lamina. The units of the axes are metres.
  1. Show that the coordinates of the centre of mass of this lamina are \(( 0.75,1.6 )\). This lamina and another exactly like it are attached to a uniform rod PQ , of mass 12 kg and length 8 m , to form a rigid body as shown in Fig. 4. Each lamina has mass 6.5 kg . The ends of the rod are at \(\mathrm { P } ( - 4,0 )\) and \(\mathrm { Q } ( 4,0 )\). The rigid body lies entirely in the \(( x , y )\) plane. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{b7f8bdfd-33dc-4453-8f3a-ddd24be17372-4_511_956_1836_557} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
  2. Find the coordinates of the centre of mass of the rigid body. The rigid body is freely suspended from the point \(\mathrm { A } ( 2,4 )\) and hangs in equilibrium.
  3. Find the angle that PQ makes with the horizontal.