OCR M3 2007 January — Question 6

Exam BoardOCR
ModuleM3 (Mechanics 3)
Year2007
SessionJanuary
TopicMomentum and Collisions 2

6
\includegraphics[max width=\textwidth, alt={}, center]{f334f6e4-2a60-4647-8b37-e48937c85747-3_446_821_1007_664} Two uniform smooth spheres \(A\) and \(B\) of equal radius are moving on a horizontal surface when they collide. \(A\) has mass 0.4 kg , and \(B\) has mass \(m \mathrm {~kg}\). Immediately before the collision, \(A\) is moving with speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an acute angle \(\theta\) to the line of centres, and \(B\) is moving with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at \(30 ^ { \circ }\) to the line of centres. Immediately after the collision \(A\) is moving with speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at \(45 ^ { \circ }\) to the line of centres, and \(B\) is moving with speed \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) perpendicular to the line of centres (see diagram).
  1. Find \(u\).
  2. Given that \(\theta = 88.1 ^ { \circ }\) correct to 1 decimal place, calculate the approximate values of \(v\) and \(m\).
  3. The coefficient of restitution is 0.75 . Show that the exact value of \(\theta\) is a root of the equation \(8 \sin \theta - 6 \cos \theta = 9 \cos 30 ^ { \circ }\).