5. A particle \(P\), of mass 0.5 kg , rests on the surface of a rough horizontal table. The coefficient of friction between \(P\) and the table is \(0.5 . P\) is connected to a particle \(Q\), of mass 0.2 kg , by a light inextensible string passing through
\includegraphics[max width=\textwidth, alt={}, center]{627b3411-07ba-4ee4-a672-93a64eeb90b3-1_280_519_2367_1499}
[0pt]
[Turn over ...
\section*{MECHANICS 3 (A) TEST PAPER 10 Page 2}
- continued ...
a small smooth hole at a point \(O\) on the table, such that the distance \(O Q\) is \(0.4 \mathrm {~m} . Q\) moves in a horizontal circle while \(P\) remains in limiting equilibrium.
- Calculate the angle \(\theta\) which \(O Q\) makes with the vertical.
- Show that the speed of \(Q\) is \(1.33 \mathrm {~ms} ^ { - 1 }\).
The motion is altered so that \(Q\) hangs at rest below \(O\) and \(P\) moves in a horizontal circle on the table with speed \(0.84 \mathrm {~ms} ^ { - 1 }\), at a constant distance \(r \mathrm {~m}\) from \(O\) but tending to slip away from \(O\). - Find the value of \(r\).