7 Two smooth spheres, \(A\) and \(B\), have equal radii and masses \(2 m \mathrm {~kg}\) and \(m \mathrm {~kg}\) respectively. The spheres are moving on a smooth horizontal plane. The sphere \(A\) has velocity \(( 3 \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) when it collides with the sphere \(B\), which has velocity \(( 2 \mathbf { i } - 5 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). Immediately after the collision, the velocity of the sphere \(B\) is \(( 2 \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
- Find the velocity of \(A\) immediately after the collision.
- Show that the impulse exerted on \(B\) in the collision is \(( 6 m \mathbf { j } )\) Ns.
- Find the coefficient of restitution between the two spheres.
- After the collision, each sphere moves in a straight line with constant speed. Given that the radius of each sphere is 0.05 m , find the time taken, from the collision, until the centres of the spheres are 1.10 m apart.