4 The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are directed due east, due north and vertically upwards respectively.
A helicopter, \(A\), is travelling in the direction of the vector \(- 2 \mathbf { i } + 3 \mathbf { j } + 6 \mathbf { k }\) with constant speed \(140 \mathrm {~km} \mathrm {~h} ^ { - 1 }\). Another helicopter, \(B\), is travelling in the direction of the vector \(2 \mathbf { i } - \mathbf { j } + 2 \mathbf { k }\) with constant speed \(60 \mathrm {~km} \mathrm {~h} ^ { - 1 }\).
- Find the velocity of \(A\) relative to \(B\).
- Initially, the position vectors of \(A\) and \(B\) are \(( 4 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } ) \mathrm { km }\) and \(( - 3 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k } ) \mathrm { km }\) respectively, relative to a fixed origin.
Write down the position vector of \(A\) relative to \(B , t\) hours after they leave their initial positions.
- Find the distance between \(A\) and \(B\) when they are closest together.
\includegraphics[max width=\textwidth, alt={}]{0590950d-145c-4ae2-bc3c-f61a9433d158-10_2486_1714_221_153}
\includegraphics[max width=\textwidth, alt={}]{0590950d-145c-4ae2-bc3c-f61a9433d158-11_2486_1714_221_153}