AQA M3 2011 June — Question 4

Exam BoardAQA
ModuleM3 (Mechanics 3)
Year2011
SessionJune
TopicVectors 3D & Lines

4 The unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are directed due east, due north and vertically upwards respectively. A helicopter, \(A\), is travelling in the direction of the vector \(- 2 \mathbf { i } + 3 \mathbf { j } + 6 \mathbf { k }\) with constant speed \(140 \mathrm {~km} \mathrm {~h} ^ { - 1 }\). Another helicopter, \(B\), is travelling in the direction of the vector \(2 \mathbf { i } - \mathbf { j } + 2 \mathbf { k }\) with constant speed \(60 \mathrm {~km} \mathrm {~h} ^ { - 1 }\).
  1. Find the velocity of \(A\) relative to \(B\).
  2. Initially, the position vectors of \(A\) and \(B\) are \(( 4 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } ) \mathrm { km }\) and \(( - 3 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k } ) \mathrm { km }\) respectively, relative to a fixed origin. Write down the position vector of \(A\) relative to \(B , t\) hours after they leave their initial positions.
  3. Find the distance between \(A\) and \(B\) when they are closest together.
    \includegraphics[max width=\textwidth, alt={}]{0590950d-145c-4ae2-bc3c-f61a9433d158-10_2486_1714_221_153}
    \includegraphics[max width=\textwidth, alt={}]{0590950d-145c-4ae2-bc3c-f61a9433d158-11_2486_1714_221_153}