You are given that the position of the centre of mass, G , of a right-angled triangle cut from thin uniform material in the position shown in Fig. 3.1 is at the point \(\left( \frac { 1 } { 3 } a , \frac { 1 } { 3 } b \right)\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ea3c0177-bf3b-4475-9ab1-ae628aeb0bf0-4_328_382_360_845}
\captionsetup{labelformat=empty}
\caption{Fig. 3.1}
\end{figure}
A plane thin uniform sheet of metal is in the shape OABCDEFHIJO shown in Fig. 3.2. BDEA and CDIJ are rectangles and FEH is a right angle. The lengths of the sides are shown with each unit representing 1 cm .
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ea3c0177-bf3b-4475-9ab1-ae628aeb0bf0-4_862_906_1032_584}
\captionsetup{labelformat=empty}
\caption{Fig. 3.2}
\end{figure}
- Calculate the coordinates of the centre of mass of the metal sheet, referred to the axes shown in Fig. 3.2.
The metal sheet is freely suspended from corner B and hangs in equilibrium.
- Calculate the angle between BD and the vertical.