OCR MEI M2 2009 June — Question 4

Exam BoardOCR MEI
ModuleM2 (Mechanics 2)
Year2009
SessionJune
TopicCentre of Mass 1

4 In this question you may use the following facts: as illustrated in Fig. 4.1, the centre of mass, G, of a uniform thin open hemispherical shell is at the mid-point of OA on its axis of symmetry; the surface area of this shell is \(2 \pi r ^ { 2 }\), where \(r\) is the distance OA. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{81efb50d-c89d-4ce1-94d7-592c946f6176-5_344_542_445_804} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
\end{figure} A perspective view and a cross-section of a dog bowl are shown in Fig. 4.2. The bowl is made throughout from thin uniform material. An open hemispherical shell of radius 8 cm is fitted inside an open circular cylinder of radius 8 cm so that they have a common axis of symmetry and the rim of the hemisphere is at one end of the cylinder. The height of the cylinder is \(k \mathrm {~cm}\). The point O is on the axis of symmetry and at the end of the cylinder. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{81efb50d-c89d-4ce1-94d7-592c946f6176-5_494_947_1238_267} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{81efb50d-c89d-4ce1-94d7-592c946f6176-5_478_492_1238_1370} \captionsetup{labelformat=empty} \caption{Fig. 4.3}
\end{figure}
  1. Show that the centre of mass of the bowl is a distance \(\frac { 64 + k ^ { 2 } } { 16 + 2 k } \mathrm {~cm}\) from O . A version of the bowl for the 'senior dog' has \(k = 12\) and an end to the cylinder, as shown in Fig. 4.3. The end is made from the same material as the original bowl.
  2. Show that the centre of mass of this bowl is a distance \(6 \frac { 1 } { 3 } \mathrm {~cm}\) from O . This bowl is placed on a rough slope inclined at \(\theta\) to the horizontal.
  3. Assume that the bowl is prevented from sliding and is on the point of toppling. Draw a diagram indicating the position of the centre of mass of the bowl with relevant lengths marked. Calculate the value of \(\theta\).
  4. If the bowl is not prevented from sliding, determine whether it will slide when placed on the slope when there is a coefficient of friction between the bowl and the slope of 1.5.