Fig. 3.2 shows uniform beams PQ and QR , each of length 2 lm and of weight \(W \mathrm {~N}\). The beams are freely hinged at Q and are in equilibrium on a rough horizontal surface when inclined at \(60 ^ { \circ }\) to the horizontal. You are given that the total force acting at Q on QR due to the hinge is horizontal. This force, \(U \mathrm {~N}\), is shown in Fig. 3.3.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{130d0f63-83ac-484f-9c0b-a633e0d87743-4_428_566_1699_536}
\captionsetup{labelformat=empty}
\caption{Fig. 3.2}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{130d0f63-83ac-484f-9c0b-a633e0d87743-4_296_282_1699_1407}
\captionsetup{labelformat=empty}
\caption{Fig. 3.3}
\end{figure}
Show that the frictional force between the floor and each beam is \(\frac { \sqrt { 3 } } { 6 } W \mathrm {~N}\).