OCR MEI M2 2013 January — Question 4

Exam BoardOCR MEI
ModuleM2 (Mechanics 2)
Year2013
SessionJanuary
TopicMoments

4 A rigid thin uniform rod AB with length 2.4 m and weight 30 N is used in different situations.
  1. In the first situation, the rod rests on a small support 0.6 m from B and is held horizontally in equilibrium by a vertical string attached to A, as shown in Fig. 4.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{42b6ee17-f0ae-4687-8392-281ba724a607-5_196_707_456_680} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
    \end{figure} Calculate the tension in the string and the force of the support on the rod.
  2. In the second situation, the rod rests in equilibrium on the point of slipping with end A on a horizontal floor and the rod resting at P on a fixed block of height 0.9 m , as shown in Fig. 4.2. The rod is perpendicular to the edge of the block on which it rests and is inclined at \(\theta\) to the horizontal. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{42b6ee17-f0ae-4687-8392-281ba724a607-5_208_746_1101_657} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure} (A) Suppose that the contact between the block and the rod is rough with coefficient of friction 0.6 and contact between the end A and the floor is smooth. Show that \(\tan \theta = 0.6\).
    (B) Suppose instead that the contact between the block and the rod is smooth and the contact between the end A and the floor is rough. The rod is now in limiting equilibrium at a different angle \(\theta\) such that the distance AP is 1.5 m . Calculate the normal reaction of the block on the rod. Calculate the coefficient of friction between the rod and the floor.