OCR MEI M2 2009 January — Question 4

Exam BoardOCR MEI
ModuleM2 (Mechanics 2)
Year2009
SessionJanuary
TopicMoments

4
  1. A uniform, rigid beam, AB , has a weight of 600 N . It is horizontal and in equilibrium resting on two small smooth pegs at P and Q . Fig. 4.1 shows the positions of the pegs; lengths are in metres. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{3865b4b3-97c7-412b-aabd-2705a954a847-5_229_647_404_790} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
    \end{figure}
    1. Calculate the forces exerted by the pegs on the beam. A force of \(L \mathrm {~N}\) is applied vertically downwards at B . The beam is in equilibrium but is now on the point of tipping.
    2. Calculate the value of \(L\).
  2. Fig. 4.2 shows a framework in a vertical plane constructed of light, rigid rods \(\mathrm { AB } , \mathrm { BC }\) and CA . The rods are freely pin-jointed to each other at \(\mathrm { A } , \mathrm { B }\) and C and to a fixed point at A . The pin-joint at C rests on a smooth, horizontal support. The dimensions of the framework are shown in metres. There is a force of 340 N acting at B in the plane of the framework. This force and the \(\operatorname { rod } \mathrm { BC }\) are both inclined to the vertical at an angle \(\alpha\), which is defined in triangle BCX . The force on the framework exerted by the support at C is \(R \mathrm {~N}\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{3865b4b3-97c7-412b-aabd-2705a954a847-5_675_869_1434_678} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure}
    1. Show that \(R = 600\).
    2. Draw a diagram showing all the forces acting on the framework and also the internal forces in the rods.
      [0pt]
    3. Calculate the internal forces in the three rods, indicating whether each rod is in tension or in compression (thrust). [Your working in this part should correspond to your diagram in part (ii).]
This paper (3 questions)
View full paper