OCR M2 2008 June — Question 8

Exam BoardOCR
ModuleM2 (Mechanics 2)
Year2008
SessionJune
TopicCentre of Mass 1

8
  1. Fig. 1 A uniform lamina \(A B C D\) is in the form of a right-angled trapezium. \(A B = 6 \mathrm {~cm} , B C = 8 \mathrm {~cm}\) and \(A D = 17 \mathrm {~cm}\) (see Fig. 1). Taking \(x\) - and \(y\)-axes along \(A D\) and \(A B\) respectively, find the coordinates of the centre of mass of the lamina.
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{6ae57fe9-3b6f-46c2-95b8-d48903ed796b-5_481_1079_991_575} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} The lamina is smoothly pivoted at \(A\) and it rests in a vertical plane in equilibrium against a fixed smooth block of height 7 cm . The mass of the lamina is 3 kg . \(A D\) makes an angle of \(30 ^ { \circ }\) with the horizontal (see Fig. 2). Calculate the magnitude of the force which the block exerts on the lamina.