Edexcel M2 — Question 1

Exam BoardEdexcel
ModuleM2 (Mechanics 2)
TopicCentre of Mass 1

  1. Particles of mass \(2 m , 3 m\) and \(5 m\) are placed at the points in the \(x - y\) plane with coordinates \(( - 1,5 ) , ( 0,6 )\) and \(( 3 , - 2 )\) respectively.
    Find the coordinates of the centre of mass of this system of particles.
  2. A lorry of mass 3800 kg is pulling a trailer of mass 1200 kg along a straight horizontal road. At a particular moment, the lorry and trailer are moving at a speed of \(10 \mathrm {~ms} ^ { - 1 }\) and accelerating at \(0.8 \mathrm {~ms} ^ { - 2 }\). The resistances to the motion of the lorry and the trailer are constant and of magnitude 1600 N and 600 N respectively.
    Find the rate, in kW , at which the engine of the lorry is working.
  3. A bullet of mass 0.05 kg is fired with speed \(u \mathrm {~ms} ^ { - 1 }\) from a gun, which recoils at a speed of \(0.008 u \mathrm {~ms} ^ { - 1 }\) in the opposite direction to that in which the bullet is fired.
    1. Find the mass of the gun.
    2. Find, in terms of \(u\), the kinetic energy given to the bullet and to the gun at the instant of firing.
    3. If the total kinetic energy created in firing the gun is 5100 J , find the value of \(u\).
    4. The acceleration of a particle \(P\) at time \(t \mathrm {~s}\) is \(\mathbf { a } \mathrm { ms } ^ { - 2 }\), where \(\mathbf { a } = 4 \mathrm { e } ^ { t } \mathbf { i } - \mathrm { e } ^ { t } \mathbf { j }\). When \(t = 0 , P\) has velocity \(4 \mathrm { i } \mathrm { ms } ^ { - 1 }\).
    5. Find the speed of \(P\) when \(t = 2\).
    6. Find the time at which the direction of motion of \(P\) is parallel to the vector \(5 \mathbf { i } - \mathbf { j }\).
    \includegraphics[max width=\textwidth, alt={}]{63133ab4-9381-4777-a575-1207219948b7-1_323_383_1992_429}
    A uniform plank \(A B\), of mass 3 kg and length 2 m , rests in equilibrium with the point \(P\) in contact with a smooth cylinder. The end \(B\) rests on a rough horizontal surface and the coefficient of friction between the plank and the surface is \(\frac { 1 } { 3 } . A B\) makes an angle of \(60 ^ { \circ }\) with the horizontal.
    If the plank is in limiting equilibrium in this position, find
  4. the magnitude of the force exerted by the cylinder on the plank at \(P\),
  5. the distance \(A P\). \section*{MECHANICS 2 (A) TEST PAPER 10 Page 2}
This paper (2 questions)
View full paper