5 A particle, of mass 12 kg , is moving along a straight horizontal line. At time \(t\) seconds, the particle has speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). As the particle moves, it experiences a resistance force of magnitude \(4 v ^ { \frac { 1 } { 3 } }\). No other horizontal force acts on the particle.
The initial speed of the particle is \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Show that
$$v = \left( 4 - \frac { 2 } { 9 } t \right) ^ { \frac { 3 } { 2 } }$$
- Find the value of \(t\) when the particle comes to rest.