OCR MEI M1 — Question 3

Exam BoardOCR MEI
ModuleM1 (Mechanics 1)
TopicSUVAT in 2D & Gravity

3 In this question the origin is a point on the ground. The directions of the unit vectors \(\left( \begin{array} { l } 1
0
0 \end{array} \right) , \left( \begin{array} { l } 0
1
0 \end{array} \right)\) and \(\left( \begin{array} { l } 0
0
1 \end{array} \right)\) are
east, north and vertically upwards.
\includegraphics[max width=\textwidth, alt={}, center]{cb72a1c4-f769-4348-ad7f-66c3c96e1732-3_401_686_368_721} Alesha does a sky-dive on a day when there is no wind. The dive starts when she steps out of a moving helicopter. The dive ends when she lands gently on the ground.
  • During the dive Alesha can reduce the magnitude of her acceleration in the vertical direction by spreading her arms and increasing air resistance.
  • During the dive she can use a power unit strapped to her back to give herself an acceleration in a horizontal direction.
  • Alesha's mass, including her equipment, is 100 kg .
  • Initially, her position vector is \(\left( \begin{array} { r } - 75
    90
    750 \end{array} \right) \mathrm { m }\) and her velocity is \(\left( \begin{array} { r } - 5
    0
    - 10 \end{array} \right) \mathrm { ms } ^ { - 1 }\).
    1. Calculate Alesha's initial speed, and the initial angle between her motion and the downward vertical.
At a certain time during the dive, forces of \(\left( \begin{array} { r } 0
0
- 980 \end{array} \right) \mathrm { N } , \left( \begin{array} { r } 0
0
880 \end{array} \right) \mathrm { N }\) and \(\left( \begin{array} { r } 50
- 20
0 \end{array} \right) \mathrm { N }\) are acting on Alesha.
  • Suggest how these forces could arise.
  • Find Alesha's acceleration at this time, giving your answer in vector form, and show that, correct to 3 significant figures, its magnitude is \(1.14 \mathrm {~ms} ^ { - 2 }\). One suggested model for Alesha's motion is that the forces on her are constant throughout the dive from when she leaves the helicopter until she reaches the ground.
  • Find expressions for her velocity and position vector at time \(t\) seconds after the start of the dive according to this model. Verify that when \(t = 30\) she is at the origin.
  • Explain why consideration of Alesha's landing velocity shows this model to be unrealistic.