- At time \(t = 0\), a particle of mass 2 kg has velocity \(( 8 \mathbf { i } + \lambda \mathbf { j } ) \mathrm { ms } ^ { - 1 }\) where \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal perpendicular unit vectors and \(\lambda > 0\).
Given that the speed of the particle at time \(t = 0\) is \(17 \mathrm {~m} \mathrm {~s} ^ { - 1 }\),
- find the value of \(\lambda\).
The particle experiences a constant retarding force \(\mathbf { F }\) so that when \(t = 5\), it has velocity \(( 3 \mathbf { i } + 5 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
- Show that \(\mathbf { F }\) can be written in the form \(\mu ( \mathbf { i } + 2 \mathbf { j } ) \mathrm { N }\) where \(\mu\) is a constant which you should find.
(5 marks)