7 A particle is initially at the point \(A\), which has position vector \(13.6 \mathbf { i }\) metres, with respect to an origin \(O\). At the point \(A\), the particle has velocity \(( 6 \mathbf { i } + 2.4 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\), and in its subsequent motion, it has a constant acceleration of \(( - 0.8 \mathbf { i } + 0.1 \mathbf { j } ) \mathrm { ms } ^ { - 2 }\). The unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are directed east and north respectively.
- Find an expression for the velocity of the particle \(t\) seconds after it leaves \(A\).
- Find an expression for the position vector of the particle, with respect to the origin \(O\), \(t\) seconds after it leaves \(A\).
- Find the distance of the particle from the origin \(O\) when it is travelling in a north-westerly direction.
\includegraphics[max width=\textwidth, alt={}]{ccc1db66-9700-4f22-905e-cc0bdf1fd3c1-17_2486_1709_221_153}