6. When a tree seed is planted the probability of it germinating is \(p\).
A random sample of size \(n\) is taken and the number of tree seeds, \(X\), which germinate is recorded.
- Show that \(\hat { p } _ { 1 } = \frac { X } { n }\) is an unbiased estimator of \(p\).
- Find the variance of \(\hat { p } _ { 1 }\).
A second sample of size \(m\) is taken and the number of tree seeds, \(Y\), which germinate is recorded.
Given that \(\hat { p } _ { 2 } = \frac { Y } { m }\) and that \(\hat { p } _ { 3 } = a \left( 3 \hat { p } _ { 1 } + 2 \hat { p } _ { 2 } \right)\) is an unbiased estimator of \(p\),
- show that
- \(\quad a = \frac { 1 } { 5 }\),
- \(\operatorname { Var } \left( \hat { p } _ { 3 } \right) = \frac { p ( 1 - p ) } { 25 } \left( \frac { 9 } { n } + \frac { 4 } { m } \right)\).
- Find the range of values of \(\frac { n } { m }\) for which
$$\operatorname { Var } \left( \hat { p } _ { 3 } \right) < \operatorname { Var } \left( \hat { p } _ { 1 } \right) \text { and } \operatorname { Var } \left( \hat { p } _ { 3 } \right) < \operatorname { Var } \left( \hat { p } _ { 2 } \right)$$
- Given that \(n = 20\) and \(m = 60\), explain which of \(\hat { p } _ { 1 } , \hat { p } _ { 2 }\) or \(\hat { p } _ { 3 }\) is the best estimator.